b^2=476

Simple and best practice solution for b^2=476 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for b^2=476 equation:



b^2=476
We move all terms to the left:
b^2-(476)=0
a = 1; b = 0; c = -476;
Δ = b2-4ac
Δ = 02-4·1·(-476)
Δ = 1904
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1904}=\sqrt{16*119}=\sqrt{16}*\sqrt{119}=4\sqrt{119}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{119}}{2*1}=\frac{0-4\sqrt{119}}{2} =-\frac{4\sqrt{119}}{2} =-2\sqrt{119} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{119}}{2*1}=\frac{0+4\sqrt{119}}{2} =\frac{4\sqrt{119}}{2} =2\sqrt{119} $

See similar equations:

| 3y+4y=10+11 | | 2=p-(-4) | | 7÷2(3x+4)=3 | | w-5/2=5/2 | | 3(2x+4)=4(x-19) | | 4(2x-3)=2(3x+3)+1 | | 4=13-r | | 5x-4=6x=10 | | -3/5+z=2/7 | | ((5m+4)/3)−((3−4m)/5)=3/7 | | 4y^2+5=12y | | 2d+2d-d=12 | | 8(m+3)=8 | | ∠5=3x+11 | | 3(p+6)=8p | | 4(w=18)-19=-3 | | 0=2x-5x+5x+1 | | 2a+21=8a−9= | | 4y^-12y=3 | | -14z+16z=4z | | 4y–9=15 | | 3(2+c)=36 | | 5.4=n^-0.9 | | 2u+40=-2(u-8) | | (3x-5)+(19-x)+2x=180 | | -1(x+3)-6=10 | | -86=n-37 | | u-5/4=7/4 | | 8*(10−k)=2k | | -2m+5(1+4m)=-13 | | 2(5-y)=18 | | 2(w+5)=-6w-46 |

Equations solver categories